当前位置:论文写作 > 论文大全 > 文章内容

氧化石墨烯纳米载体在胶质瘤治疗中进展

主题:石墨烯 下载地址:论文doc下载 原创作者:原创作者未知 评分:9.0分 更新时间: 2024-01-27

简介:本文是关于神经胶质瘤和石墨相关论文写作技巧范文和石墨烯方面电大毕业论文范文.

神经胶质瘤和石墨论文范文

[摘 要] 胶质瘤是常见的中枢神经系统原发性肿瘤,临床治疗普遍采用手术切除后放化疗,但其治疗效果不佳.氧化石墨烯纳米载体具有优良的理化性质,主要通过药物化疗、免疫疗法和光热疗法三种途径在胶质瘤的治疗中发挥重要作用.本文对近年来氧化石墨烯纳米载体在胶质瘤治疗中的研究作一综述,以期为胶质瘤的生物治疗提供参考依据和新思路.

[关键词] 氧化石墨烯;胶质瘤;纳米载体

[中图分类号] R739.41 [文献标识码] A [文章编号] 1673-7210(2020)03(a)-0051-04

[Abstract] Glioma is a common primary tumor of the central nervous system, radiotherapy and chemotherapy after surgical resection are commonly used in clinical treatment, but the therapeutic effect is not good. Graphene oxide nanocarriers he excellent physicochemical propertie and play an important role in the treatment of glioma mainly through drug chemotherapy, immunotherapy and photothermal therapy. This paper reviews the recent research progress of graphene oxide nanocarrier in the treatment of glioma in order to provide reference and new ideas for the biological treatment of glioma.

[Key words] Graphene oxide; Glioma; Nanocarrier

胶质瘤是常见的中枢神经系统原发性肿瘤,由人脑星形胶质细胞产生,约占颅内肿瘤的27%,发病率较高且易转移,是最具侵袭性和致命性的恶性肿瘤之一[1].在所有胶质瘤中,胶质母细胞瘤(glioblastoma,GBM)最为常见[2].目前,GBM的标准治疗采用手术切除后放化疗,由于GBM呈现浸润性生长,手术不易完全切除,且GBM对化疗药物敏感性低,治疗效果不佳,据报道,GBM患者1年生存率约为30%,5年生存率低于5%[3-4].随着对胶质瘤发生发展机制的不断认识,从胶质瘤分子生物学角度寻找纳米载体联合靶向治疗有望成为一种新型治疗方法,有关纳米药物载体的研究也逐渐成为近年来的热点.

1 纳米载体概述

用作载体的纳米材料尺寸普遍在1~1000 nm之间[5].纳米载体是将纳米材料作为载体,通过化学键结合、物理吸附等手段将抗肿瘤药物包封于纳米颗粒中,通过识别靶点作用将载药纳米颗粒传导至病患部分,通过特定的物理、化学及生物调控方式将药物以最适量释放,发挥治疗效果[6-7].

2 氧化石墨烯概述

2.1 氧化石墨烯

石墨烯是碳原子以Sp2杂化方式连接形成的蜂窝状碳结构物质,呈六角形蜂巢层状结构[8].氧化石墨烯(graphene oxide,GO)作为石墨烯氧化后的衍生物,其边缘和平面含有大量的羧基、环氧基、羟基等含氧官能团,是可进行化学修饰的活性位点[9].大量含氧基团的存在,使GO具有良好的水溶性和分散性[10].GO骨架為芳香环,具有较大的比表面积和丰富的功能基团,一方面在π-π堆积作用下可大量吸附抗癌药物,提高药物负载率;另一方面,可以结合蛋白质、核苷酸片段、适配体和其他生物大分子,实现靶点的识别和功能化修饰[11-12].

2.2 氧化石墨烯载体

肿瘤组织因淋巴管壁塌陷导致淋巴循环受阻,大分子和纳米级材料无法经淋巴系统返回血液中,从而被动滞留于肿瘤组织中发挥作用,即肿瘤的高渗透与滞留效应(enhanced permeability and retention effect,EPR)[13].EPR为纳米材料作为载体靶向肿瘤发挥抗肿瘤作用提供了依据.氧化石墨烯纳米载体系统与传统的抗肿瘤运载体系比较,具有更多的优点:①良好的分散性能和血液相容性,适应人体液态环境[14].②较大的比表面积,可与蛋白质、单链DNA碱基等紧密结合,便于多功能修饰[15].③单原子层厚度,其两个基面均可吸附药物,具有其他纳米材料无可比拟的超高载药率[16].④具有缓释性,可延长药物的半衰期[17].⑤具有良好的生物安全性,对人体毒害较小[18].

2.3 氧化石墨烯载体的功能化修饰

石墨烯稳定性高,不易与其他介质进行反应,限制了其作为药物载体的应用.对氧化石墨烯的结构和性能进行功能化修饰,是提高石墨烯载体利用率的有效途径.目前,氧化石墨烯的功能化修饰方法主要分为共价修饰和非共价修饰两类.共价修饰是指利用化学反应对氧化石墨烯表面的活性环氧基团进行改性,而非共价键修饰应用更为巧妙,它通过π-π相互作用、离子键和氢键等对石墨烯进行功能化修饰,一方面赋予氧化石墨烯新的优异性能;另一方面可使石墨烯溶于极性溶剂,提高其分散性[19].

2.3.1 氧化石墨烯载体的共价修饰 氧化石墨烯表面含有大量活性氧基团,如羟基、羧基、羰基等,可通过酯键、酰胺键等共价键与其他基团进行化学反应,对其性能进行优化.Veca等[20]将富含-OH的聚乙烯醇,通过-OH与-COOH的酯化反应连接在氧化石墨烯表面,制备得到了聚乙烯醇-石墨烯复合物,该复合物可稳定分散于水、乙醇等溶剂中.

[3] Prelaj A,Rebuzzi SE,Caffarena G,et al. Therapeutic approach in glioblastoma multiforme with primitive neuroectodermal tumor components:Case report and review of the literature [J]. Oncol Lett,2018,15(5):6641-6647.

[4] Ananta JS,Paulmurugan R,Massoud TF. Nanophttp://127.1.1.1:801/xdl.php?url等于http://gzslib.vip.qikan.com/Text/article-Delivered Antisense MicroRNA-21 Enhances the Effects of Temozolomide on Glioblastoma Cells [J]. Mol Pharm,2015,12(12):4509-4517.

[5] Priyadarsini S,Mukherjee S,Mishra M. Nanophttp://127.1.1.1:801/xdl.php?url等于http://gzslib.vip.qikan.com/Text/articles used in dentistry:A review [J]. J Oral Biol Craniofac Res,2018, 8(1):58-67.

[6] Tibbitt MW,Dahlman JE,Langer R. Emerging Frontiers in Drug Delivery [J]. J Am Chem Soc,2016,138(3):704-717.

[7] Fathi Karkan S,Mohammadhosseini M,Panahi Y,et al. Magnetic nanophttp://127.1.1.1:801/xdl.php?url等于http://gzslib.vip.qikan.com/Text/articles in cancer diagnosis and treatment:a review [J]. Artif Cells Nanomed Biotechnol,2017,45(1):1-5.

[8] Wang F,Liu L,Li WJ. Graphene-Based Glucose Sensors:A Brief Review [J]. IEEE Trans Nanobioscience,2015,14(8):818-834.

[9] Suvarnaphaet P,Pechprasarn S. Graphene-Based Materials for Biosensors:A Review [J]. Sensors(Basel),2017,17(10):2161.

[10] Shareena TPD,Mcshan D,Daahapatra ,et al. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health [J]. Nano-micro Lett,2018,10(3):53.

[11] Wu X,Mu F,Wang Y,et al. Graphene and Graphene-Based Nanomaterials for DNA Detection:A Review [J]. Molecules,2018,23(8):pii: E2050.

[12] Kumar S,Chatterjee K. Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices [J]. ACS Appl Mater Interfaces,2016,8(40):26431-26457.

[13] Spitzbarth M,Scherer A,Schachtschneider A,et al. Time-,spectral- and spatially resolved EPR spectroscopy enables simultaneous monitoring of diffusion of different guest molecules in nano-pores [J]. J Magn Reson,2017, 283:45-51.

[14] Daniyal M,Liu B,Wang W. Comprehensive Review On Graphene Oxide For Use In Drug Delivery System [J]. Curr Med Chem,2019.

[15] Mohammadrezaei D,Golzar H,Rezai Rad M,et al. In vitro effect of graphene structures as an osteoinductive factor in bone tissue engineering:A systematic review [J]. J Biomed Mater Res A,2018,106(8):2284-2343.

[16] Yang K,Feng L,Liu Z. The advancing uses of nano-graphene in drug delivery [J]. Expert Opin Drug Deliv,2015,12(4):601-612.

[17] Matteini P,Tatini F,Cigli L,et al. Graphene as a photothermal switch for controlled drug release [J]. Nanoscale,2014,6(14):7947-7953.

[18] Ding H,Zhang F,Zhao C,et al. Beyond a Carrier:Graphene Quantum Dots as a Probe for Programmatically Monitoring Anti-Cancer Drug Delivery,Release,and Response [J]. ACS Appl Mater Interfaces,2017,9(33):27396-27401.

[19] 雷颖,杨蓉,王黎晴,等.石墨烯的功能化及其在储能材料领域中的应用[J].化學通报,2017,80(9):802-808.

[20] Veca LM,Lu F,Meziani MJ,et al. Polymer functionalization and solubilization of carbon nanosheets [J]. Chem Commun(Camb),2009,14(18):2565-2567.

[21] Depan D,Shah J,Misra R. Controlled release of drug from folate-decorated and graphene mediated drug delivery system:Synthesis,loading efficiency,and drug release response [J]. Materials Science and Engineering:C,2011, 13(7):1305-1312.

[22] Jackson S,Elali A,Virgintino D,et al. Blood-brain barrier pericyte importance in malignant gliomas:what we can learn from stroke and Alzheimer′s disease [J]. Neuro Oncol,2017,19(9):1173-1182.

[23] Tonelli FM,Goulart VA,Gomes KN,et al. Graphene-based nanomaterials:biological and medical applications and toxicity [J]. Nanomedicine(Lond),2015,10(15):2423-2450.

[24] Mendonca MC,Soares ES,de Jesus MB,et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood-Brain Barrier:An in Vitro and in Vivo Study [J]. Mol Pharm,2016,13(11):3913-3924.

[25] Yang X,Zhang X,Liu Z,et al. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide [J]. J Phys Chem C,2008,112(45):17554-17558.

[26] Lu YJ,Yang HW,Hung SC,et al. Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide [J]. Int J Nano-medicine,2012,7:1737-1747.

[27] Liu G,Shen H,Mao J,et al. Tranerrin modified graphene oxide for glioma-targeted drug delivery:in vitro and in vivo evaluations [J]. ACS Appl Mater Interfaces,2013,5(15):6909-6914.

[28] Wang H,Gu W,Xiao N,et al. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug [J]. Int J Nanomedicine,2014,9:1433-1442.

[29] Wen SC,Williams JV. New Approaches for Immunization and Therapy against Human Metapneumovirus [J]. Clin Vaccine Immunol,2015,22(8):858-866.

[30] Alvarez-Dominguez C,Calderón-Gonzalez R,Terán-Narro H,et al. Dendritic cell therapy in melanoma [J]. Ann Transl Med,2017,5(19):386.

[31] Bloy N,Pol J,Aranda F,et al. Trial watch:Dendritic cell-based anticancer therapy [J]. Oncoimmunology,2014,3(11):e963424.

[32] Wang W,Li Z,Duan J,et al. In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide [J]. Nanoscale Res Lett,2014,9(1):311.

[33] Liu Y,Zhang X,Luo L,et al. Gold-nanobranched-shell based drug vehicles with ultrahigh photothermal efficiency for chemo-photothermal therapy [J]. Nanomedicine,2019,18:303-314.

[34] Cheon YA,Bae JH,Chung BG. Reduced Graphene Oxide Nanosheet for Chemo-photothermal Therapy [J]. Langmuir,2016,32(11):2731-2736.

[35] 李忠军,邓跃飞,庞家栋,等.功能化纳米氧化石墨烯微粒对胶质瘤U251细胞的靶向光热作用[J].中华临床医师杂志:电子版,2013,7(24):11503-11506.

[36] 张达,周非凡,邢达.功能化氧化石墨烯的靶向肿瘤成像与光热治疗[J].科学通报,2013,58(7):586-592.

(收稿日期:2019-09-11 本文编辑:顾家毓)

总结:此文总结:上文是一篇关于石墨烯方面的神经胶质瘤和石墨论文题目、论文提纲、神经胶质瘤和石墨论文开题报告、文献综述、参考文献的相关大学硕士和本科毕业论文.

石墨烯引用文献:

[1] 蒿甲醚和脑胶质瘤学士学位论文范文 关于蒿甲醚和脑胶质瘤学士学位论文范文2500字
[2] 星形胶质细胞专升本毕业论文范文 关于星形胶质细胞方面论文例文3000字
[3] 神经母细胞瘤研究生毕业论文范文 关于神经母细胞瘤相关本科论文范文2500字
《氧化石墨烯纳米载体在胶质瘤治疗中进展》word下载【免费】
石墨烯相关论文范文资料